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Among clinical trialists, there has been a growing interest in using external
data to improve decision-making and accelerate drug development in random-
ized clinical trials (RCTs). Here we propose a novel approach that combines
the propensity score weighting (PW) and the multi-source exchangeability mod-
elling (MEM) approaches to augment the control arm of a RCT in the rare
disease setting. First, propensity score weighting is used to construct weighted
external controls that have similar observed pre-treatment characteristics as the
current trial population. Next, the MEM approach evaluates the similarity in
outcome distributions between the weighted external controls and the concur-
rent control arm. The amount of external data we borrow is determined by
the similarities in pretreatment characteristics and outcome distributions. The
proposed approach can be applied to binary, continuous and count data. We eval-
uate the performance of the proposed PW-MEM method and several competing
approaches based on simulation and re-sampling studies. Our results show that
the PW-MEM approach improves the precision of treatment effect estimates
while reducing the biases associated with borrowing data from external sources.
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1 INTRODUCTION

Randomized controlled trials (RCTs) are commonly considered as the gold standard for demonstrating the causal effect
of an experimental treatment on clinical outcomes of interest. Despite its scientific rigor, the implementation of RCTs can
be challenging due to the associated large sample size, long duration, and operational cost. This is specially challenging in
rare disease trials and in situations when patients are unwilling to be randomized to a standard of care (SOC) that causes
low clinical benefit and/or severe toxicity. To overcome these hurdles, the FDA and the pharmaceutical industry have
expressed a growing interest in harnessing external data sources in drug development.1-6 Hybrid controlled trial (HCT)
designs can be constructed by augmenting the internal control arm (IC) of an RCT using patient-level external control
(EC) data from prior clinical trials and real world data. The use of HCTs can alleviate the challenges associated with RCTs
by reducing the sample size of the IC arm and potentially provide increased statistical power and precision in treatment
evaluation.
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The selection of external control data requires care and should follow recommendations for systematic reviews.7,8

This minimizes the risk of systematic biases, which can arise as a result of, for example, changes in standard of care over
time, differences in inclusion/exclusion criteria, confounding environmental factors, or the evolution of diagnostic tools.
The relevance of external control data depends on a number of factors such as the heterogeneity and natural history
of the disease, and requires case-by-case assessment. When suitable external controls are identified, careful statistical
considerations are needed to increase the likelihood of distinguishing the effect of a drug from other factors that can
confound the outcome of interest.

A number of Bayesian approaches have been developed to incorporate relevant information from external data sources
in the form of informative priors, such as the power prior,9 the modified power prior,10 the commensurate prior11 and the
meta-analytic-predictive prior (MAP).12,13 The exchangeability–nonexchangeability (EXNEX) approach can also be used
to borrow information from external data sources by constructing a mixture model assuming the parameter of interest in
the internal control is either exchangeable or not exchangeable with external data.14 These approaches provide powerful
tools for incorporating external information in design and analysis of clinical trial under Bayesian framework, but they
are generally not designed to adjust for pre-treatment covariates and provide causal inference. The majority of statistical
approaches for designing HCTs rely on the use of propensity score (PS) based methods to reduce biases resulting from
unbalanced covariates distributions between internal and external patient populations. Ventz et al considered the use of
external data in making early stopping decisions in RCTs and developed a measure of disimilarity for deciding if external
data should be used in evaluating efficacy.15,16 On the other hand, the propensity score-integrated composite likelihood
(PSCL) method17 takes the divide-and-conquer approach to reduce the heterogeneity between different sources. It first
groups patients into PS defined strata and then conducts information borrowing by down-weighting EC patients in each
stratum. Within each stratum, IC and EC patients are expected to have similar pre-treatment characteristics and borrow-
ing from the external data can be better justified. The down-weighting step helps to make sure the study result is not
dominated by external data and more data is borrowed from homogeneous strata as opposed to heterogeneous strata with
different PS distributions. Then, the stratum specific estimates are combined to obtain an overall estimate of treatment
effect. Similar strategies have been proposed by applying the MAP method to each stratum to incorporate information
from external sources.18,19 Alternatively, one can use propensity score matching to choose the external control patients
for inclusion into analysis as done by the Roche DLBLC study.20

A fundamental assumption in causal inference is ignorability. For a HCT, ignorability implies data source (EC vs. IC) is
independent of potential outcomes given the propensity score of being in the current study.21 The ignorability assumption
is valid if all confounders have been measured and specified correctly in the PS model. In practice, important prognostic
variables such as certain biomarkers are often not present in external data and the PS model might be mis-specified. As a
result, statistical inference based on the propensity score processed data might produce misleading estimates if important
prognostic variables are left out or not correctly adjusted for in the propensity score model. The PSCL approach evaluates
the relevance of external data according to the overlap of propensity score distributions between different data sources,
but it doesn’t take into account the possibility of unmeasured confounders. Moreover, Bayesian approaches relying on
the construction of PS defined strata requires a sufficiently large sample size for both internal and external data sources,
which may not be feasible in rare disease trials. Therefore, novel statistical approaches that can better suit the sample size
constraint of rare disease trials and provide some safe guard to the biases caused by unknown confounders are urgently
needed.

The rest of the paper is organized as follows. We introduce the proposed method for designing HCTs with binary and
continuous endpoints in Section 2. In Sections 3 and 4, we evaluate the frequentist operating characteristics of the pro-
posed approach using simulations and a collection of datasets from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (https://adni.loni.usc.edu). We compare the proposed method with several competing approaches on the basis
of type I error rate, power, bias and coverage probability. We discuss its benefits and limitations in Section 5.

2 METHOD

External control (EC) data can be gathered from different sources including registries, clinical databases or completed
and ongoing trials. We assume all EC patients are treated by the same standard of care (SOC) as patients randomized to
the IC arm and the same eligibility criteria had been applied to IC and EC patients.

We propose a two step procedure for designing HCTs based on propensity score weighting (PW) and the multi-source
exchangeability modelling approach (MEM). Hereafter, we will refer to the proposed approach as PW-MEM. The first step
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involves standardizing the IC and ECs to take into account the possible imbalance of important prognostic factors. This
can be achieved by re-weighting the EC patients using a propensity score model.22 Assuming the PS model of being in the
current study is correctly specified and includes all important baseline covariates, patients from the IC and the propensity
score weighted external control (PW-EC) can be considered as random samples from the same population. We assume
their clinical outcomes are exchangeable. Following previous works on MEM,23-26 here we consider the outcome data
from IC and PW-EC exchangeable if they are identically distributed, which differs from De Finetti’s classical definition of
exchangeable random variables. The second step uses a MEM approach proposed by Kaizer et al that provides a statistical
framework for evaluating the exchangeability between outcome distributions from different data sources.23 We will assess
the exchangeability in outcome distribution between IC and PW-EC using MEM and borrow data from PW-EC according
to its exchangeability with IC.

Compared to the divide-and-conquer approaches such as PSCL and PS-MAP,17,18 the PW-MEM method
doesn’t require additional statistical considerations involved in combining stratum-specific estimates. Unlike the
divide-and-conquer approaches, which require an adequate sample size for both the IC and EC to fill all the strata, the
use of PW allows us to work with studies of relatively small sample sizes typically seen in rare disease research. Com-
pared to the previous MEM approach based on Bayesian model averaging,23 the proposed PW-MEM approach allows us
to calculate the sample size incorporated from external sources conveniently by counting each external patient as a frac-
tion of an internal patient. Furthermore, the PW-MEM approach can be generalized to situations when multiple external
control datasets are available.

2.1 Notations

Consider a clinical trial randomizing patients to either the internal control arm (IC) or the internal treatment arm (IT).
The resulting sample size for IC and IT arm is n0 and nT , respectively. Let 𝜃0 and 𝜃T denote the parameter of interest
(response rate, mean blood pressure, etc.) in the IC and IT arm. Denote Δ the treatment effect expressed as a contrast
between these two arms (eg, Δ = 𝜃T − 𝜃0). In this work, we are interested in improving the precision in estimating Δ by
leveraging data from external controls.

Let Dj denote a data source, with Dj = 0 representing the current control and Dj = 1, … , J representing the J chosen
external controls. Denote nj the sample size available from Dj. Let i be the index of a patient from one of the J + 1 sources.
Denote yi and Si the clinical outcome and the indicator of IC versus EC for patient i. We have Si = 1 if this patient is
from D0 and Si = 0 if this patient is from external sources. Let Xi represent a length q vector of pre-treatment variables
for the same patient. We assume these pre-treatment variables are commonly available in different data sources. We will
construct the hybrid control (HC) using data from D0, … ,DJ . The HC consists of nHC =

∑J
j=0nj patients.

2.2 Propensity score weighting

Denote ei as the propensity score of patient i conditional on Xi, for i = 1, … ,nHC. We define ei as the conditional probabil-
ity of a patient being in the internal study (ei = Prob(Si = 1|Xi)), which is commonly estimated using a logistic regression.
Though we focus on using logistic regression in this work for illustration purposes, it should be noted that several
machine-learning methods can also be used.27-29 As our objective is to incorporate external data into the current study,
we will use IC patients as the target population to which the EC patients is standardized. We define the propensity score
weight as

wi = Si +
ei(1 − Si)

1 − ei
. (1)

Based on this choice of weight, external patients (Si = 0) are weighted as wi =
ei

1−ei
, whereas internal patients (Si = 1) have

a constant weight of wi = 1. Borrowing data from PW-EC is less likely to introduce bias because of the similarity in baseline
covariates between the PW-EC and IC patients. However, bias can still be introduced due to unmeasured confounders
left out by the propensity score model. The following section introduces the proposed PW-MEM method for leveraging
external data based on propensity score weighting and the multisource exchangeability modelling (MEM) approach.
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2.3 Propensity score weighted multi-source exchangeability modelling

Let Mk denote a specific exchangeability configuration for the weighted outcome data from IC and ECs. Under Mk,
these J + 1 control groups can be classified into Pk clusters denoted as Mk,1, … ,Mk,Pk . Let 𝜃1, … , 𝜃J denote the param-
eter of interest (response rate, mean glucose level, etc) for the J external controls after propensity score weighting.
We assume the weighted outcome data from sources located in the same cluster Mk,p are exchangeable and have the
same parameter 𝜃k,p (ie, 𝜃j = 𝜃k,p if j ∈ Mk,p), where p = 1, … ,Pk and j = 0, … , J. The number of distinct parameters
in Mk is Pk.

Consider the case when there exists two ECs, there are five possible exchangeability patterns:

M1: 𝜃0 = 𝜃1 = 𝜃2,

M2: 𝜃0 = 𝜃2 ≠ 𝜃1,

M3: 𝜃0 = 𝜃1 ≠ 𝜃2,

M4: 𝜃1 = 𝜃2 ≠ 𝜃0,

M5: 𝜃0 ≠ 𝜃1 ≠ 𝜃2.

where P1 = 1, P2 = P3 = P4 = 2, and P5 = 3.
If M1 is true, then the outcome distributions in the IC and the two PW-ECs are identical, suggesting PS weighting

is likely to have eliminated all the possible confounders. In this case, we can conduct a pooled analysis by combining
weighted outcome data from different sources. If M4 or M5 is true, the outcome distributions are different between the
IC and the PW-ECs, suggesting the presence of residual confounding and we should not borrow information from the
external controls. Under other exchangeability patterns, we may only want to borrow data from certain external sources.
To make a better informed decision about the amount of borrowing, we will need to estimate the uncertainty of these
different exchangeability configurations.

Given the estimated weights w = (w1, … ,wnHC ), the weighted likelihood function for outcome data in cluster Mk,p is
defined as

Lw(yk,p|Mk,p, 𝜃k,p) =
∏

j∈Mk,p

Lw(yj|𝜃k,p), (2)

where yj is the collection of outcome data from Dj. We define

Lw(yj|𝜃k,p) =
∏

i∈Dj

f (yi|𝜃k,p)wi ,

with f (.) denoting the probability density or probability mass function.
Assume the prior density for 𝜃k,p is𝜋(𝜃k,p). The weighted marginal likelihood for outcome data in Mk,p can be calculated

by averaging the weighted likelihood for data in this cluster over the prior density of 𝜃k,p:

Lw(yk,p|Mk,p) =
∫

Lw(yk,p|Mk,p, 𝜃k,p)𝜋(𝜃k,p)d𝜃k,p. (3)

Generally, this integral can be evaluated numerically using the Integrate function in R base package. For several
commonly used distributions (binomial, Gaussian, Poisson), the weighted marginal likelihood can be found in close
form. We summarize the weighted marginal likelihood function and associated assumptions for these models in
Table 1.

Denote 𝜋(Mk) the prior probability of Mk. Let K be the number of possible exchangeability configurations. Following
Bayes rule, we can estimate the posterior probability of Mk as:

𝜋(Mk|w, y0, … , yJ) =
𝜋(Mk)

∏Pk
p=1Lw(yk,p|Mk,p)

∑K
k′=1𝜋(Mk′ )

∏Pk′

p=1Lw(yk′,p|Mk′,p)
. (4)
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WEI et al. 3819

T A B L E 1 Marginal likelihood for data in cluster Mk,p given the propensity score-based-weights, assuming the outcome distribution is
Gaussian, Binomial or Poisson.

Normally distributed data

Weighted Likelihood LW(yk,p|𝜃k,p,Mk,p) =
∏

j∈Mk,p

∏
i∈Dj

{
1√
2𝜋𝜎2

j

exp
[

− 1
2

(
yi−𝜃k,p

𝜎j

)2
]}wi

Prior 𝜋(𝜃k,p) ∝ 1

Marginal likelihood LW(yk,p|Mk,p) ∝ exp( u2

4v
)
√

𝜋

v

u =
∑

j∈Mk,p

∑
i∈Dj

wiyi
𝜎

2
j
, v = 1

2

∑
j∈Mk,p

∑
i∈Dj

wi
𝜎

2
j

Notes 𝜎
2
j =

∑
i∈Dj

wi(yi−yj)2
∑

i∈Dj
wi

, yj =
∑

i∈Dj
wiyi

∑
i∈Dj

wi

Binary data

Weighted Likelihood LW(yk,p|Mk,p, 𝜃k,p) ∝
∏

j∈Mk,p

∏
i∈Dj

{
𝜃

yi
k,p(1 − 𝜃k,p)1−yi

}wi

Prior 𝜋(𝜃k,p) = Beta(𝛼, 𝛽)

Marginal likelihood LW(yk,p|Mk,p) ∝
B(𝛼+

∑
j∈Mk,p

rw
j , 𝛽+

∑
j∈Mk,p

(nw
j −rw

j ))

B(𝛼,𝛽)

Notes nw
j =

∑
i∈Dj

wi, rw
j =

∑
i∈Dj

wiyi

Poisson data

Weighted Likelihood LW(yk,p, |Mk,p, 𝜃k,p) ∝
∏

j∈Mk,p

∏
i∈Dj

{
e−𝜃k,p𝜃

yi
k,p

}wi
.

Prior 𝜋(𝜃k,p) = 𝛽
𝛼

Γ(𝛼)
𝜃
𝛼−1
k,p e−𝛽𝜃k,p

Marginal Likelihood LW(yk,p|Mk,p) ∝
Γ(𝛼+

∑
j∈Mk,p

∑
i∈Dj

wiyi)

(𝛽+
∑

j∈Mk,p

∑
i∈Dj

wi)
𝛼+

∑
j∈Mk,p

∑
i∈Dj wi yi

Note: We assume the variance is known under the Gaussian case.

Let 𝜆j denote the probability of 𝜃0 = 𝜃j, which represents the uncertainty about the exchangeable assumption between
the j-th PW-EC and the IC. We can estimate 𝜆j by summing up the posterior probabilities of exchangeability configurations
under which 𝜃j = 𝜃0, which is expressed as

𝜆j =
K∑

k=1
𝜋(Mk|w, y0, … , yJ)I(𝜃j = 𝜃0|Mk), (5)

where I(.) is the indicator function.

2.4 Posterior inference

We will conduct pooling according to the exchangeability between each weighted external control and the internal control.
Specifically, we will pool IC with an PW-EC if they are considered exchangeable and the amount of pooling will be deter-
mined by 𝜆j, which takes into account the uncertainty related to the exchangeable assumption. Assume 𝜃0 = 𝜃1 = · · · 𝜃J ,
we define the weighted likelihood function for outcome data from D0, … ,DJ as

Lw(y0, … , yJ|𝜃0, 𝜆1, … , 𝜆J) = L(y0|𝜃0)

{ J∏

j=1
Lw(yj|𝜃0)𝜆j

}

= L(y0|𝜃0)
⎧
⎪
⎨
⎪
⎩

J∏

j=1

∏

i∈Dj

f (yi|𝜃0)wi𝜆j

⎫
⎪
⎬
⎪
⎭

. (6)

Assume the prior distribution for 𝜃0 is 𝜋(𝜃0). The posterior distribution of 𝜃0 is

𝜋(𝜃0|y0, … , yJ , 𝜆1, … , 𝜆J ,w) ∝ Lw(y0, … , yJ|𝜃0, 𝜆1, … , 𝜆J)𝜋(𝜃0). (7)
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3820 WEI et al.

For binary outcomes, let r0 =
∑

i∈D0
yi denote the number of successes out of the n0 patients in the internal control.

Assume the prior distribution for 𝜃0 is Beta(𝛼, 𝛽), the posterior density of 𝜃0 given 𝜆1, … , 𝜆J and w is

𝜋(𝜃0|y0, … , yJ , 𝜆1, … , 𝜆J ,w) = Beta(𝛼 + r0 +
J∑

j=1
𝜆jrw

j , 𝛽 + n0 − r0 +
J∑

j=1
𝜆j(nw

j − rw
j )),

where nw
j =

∑
i∈Dj

wi, and rw
j =

∑
i∈Dj

wiyi.
For normally distributed outcomes, if we assume the prior density for 𝜃0 is 𝜋(𝜃0) ∝ 1, then the posterior density of 𝜃0

conditional on 𝜆1, … , 𝜆J and w is normally distributed with mean 𝜇 and precision 𝜏, where

𝜏 = n0

𝜎
2
0
+

J∑

j=1

𝜆jnw
j

𝜎
2
j

and

𝜇 = 1
𝜏

{
n0y0

𝜎
2
0
+

J∑

j=1

𝜆jnw
j yj

𝜎
2
j

}

.

We consider 𝜎2
0 =

∑
i∈D0

(yi−y0)2

n0
and 𝜎2

j =
∑

i∈Dj
wi(yi−yj)2

∑
i∈Dj

wi
for j = 1, … , J. Likewise, yj is the weighted average of outcome data

in Dj.

2.5 Effective sample size of external data

A key question in assessing the impact of external data on the hybrid control is to determine the amount of data that has
actually been incorporated from external sources. The PW-MEM approach allows us to compute the effective sample size
(ESS) we incorporate from external controls conveniently.

The PW-MEM method relies on the availability of both internal and external data for the estimation of propensity
score and exchangeability between different data sources. Based on equation 6, an external patient from Dj is considered
as equivalent to 𝜆jwi patient in the IC after PS weighting, where wi is the PS-based weight for this patient and 𝜆j is the
posterior probability that the parameter of interest from an external source is exchangeable with the internal source (ie,
𝜃0 = 𝜃j). Thus, the ESS we incorporate from all the J external sources is

ESS =
J∑

j=1

∑

i∈Dj

𝜆jwi.

PS weighting produces a more homogeneous population with balanced pretreatment covariates between internal and
external data sources. Multisource exchangeability modelling helps to safeguard the hybrid controlled design from biases
introduced by residual confounding after PS weighting. We will leverage more data from an external source if its outcome
distribution after PS weighting is similar to IC. Likewise, we will have less data from an external source if its outcome
distribution is still considerably different from IC after PS weighting.

3 SIMULATION STUDIES FOR BINARY OUTCOMES

In this section, we conduct simulation studies based on the MORPHEUS-CRC trial, which is a phase Ib/II randomized
controlled trial investigating the effect of a novel immune combination compared to regorafenib in metastatic colorectal
cancer patients.20 Assume 90 patients will be randomized in 2:1 ratio to either the experimental (nT = 60) or the control
arm (n0 = 30). Suppose there exists an EC cohort consisting of 1000 patients. We assume five binary pre-treatment vari-
ables (X1, … ,X5) and one normally distributed pre-treatment variable (X6) are commonly available in the internal and
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T A B L E 2 The distribution of pre-treatment covariates under different simulation scenarios for a hypothetical trial with binary
outcomes.

Proportion of pre-treatment covariates in IC(EC) Intercept Response rate

Scenario X1 = 1 X2 = 1 X3 = 1 X4 = 1 X5 = 1 IC EC IC EC

1 0.43 (0.43) 0.84 (0.84) 0.54 (0.54) 0.62 (0.62) 0.64 (0.64) −2 −2 0.20 0.20

2 0.43 (0.43) 0.84 (0.84) 0.54 (0.54) 0.62 (0.62) 0.20 (0.64) −2 −2 0.27 0.20

3 0.43 (0.43) 0.84 (0.84) 0.54 (0.54) 0.62 (0.62) 0.90 (0.64) −2 −2 0.16 0.20

4 0.43 (0.43) 0.84 (0.84) 0.54 (0.54) 0.62 (0.62) 0.64 (0.64) −1.5 −2 0.29 0.20

Note: There is no confounder in Scenario 1. There exists one confounder (X5) in Scenarios 2 and 3. There exists an unobserved confounder in Scenario
4, which is represented a different intercept term. The marginal response rates for EC and IC are shown for each scenario. The coefficients of X1, … ,X5

are fixed across scenarios.

external datasets. We generate X = (X1, … ,X6) independently of each other for this trial and the external dataset, respec-
tively. Let b = (b1, … , b6) represent the effect of pre-treatment variables on the outcome y, which indicates whether a
patient responds to treatment. In this case, 𝜃0 and 𝜃T represent the probability of response for the internal control and
experimental arm, respectively. HereΔ denote the log odds ratio of the treatment effect. We assumeΔ = 0 under the null
andΔ = 1 under the alternative. Denote b0S the intercept for data source S. We simulate the binary outcomes y assuming

P(y = 1|X,T, S) =
exp(b0S + X1b1 + · · · + X6b6 + TΔ)

1 + exp(b0S + X1b1 + · · · + X6b6 + TΔ)
,

where T is the indicator of treatment assignment.
We consider four simulation scenarios and generate 5,000 trials in each scenario under the null and the alternative,

respectively. Table 2 summarizes the distribution of pre-treatment variables and the marginal probability of response asso-
ciated with EC and IC in each scenario (i.e., 𝜃0 and 𝜃T). We assume b = (0.2, 0.2, 0.5, 1,−1, 0) is fixed across scenarios. The
intercept term b0S is allowed to vary across scenarios. We assume the intercept term for IC(EC) is−2(−2),−2(−2),−2(−2),
and −1.5(−2) in scenario 1, … , 4, respectively.

In Scenario 1, the distribution of pre-treatment variables are identical between EC and IC. Senario 1 represent situa-
tions when the pre-treatment covariates are balanced between the external data and internal data. In Scenarios 2 and 3,
the distribution of prognostic variable X5 is different between IC and EC. Thus, X5 is the confounder in these scenarios.
In Scenario 4, the distribution of X1, … ,X5 are identical between IC and EC, but there exists an unobserved confounder,
which is represented by the different intercept terms for IC and EC.

We evaluate treatment effect in each simulated trial using the following approaches:

1. IN-test: only use IC data assuming a Beta(0.5, 0.5) prior for 𝜃0.
2. Pooled-test: combine data from IC and EC assuming 𝜋(𝜃0) ∼ Beta(0.5, 0.5).
3. Construct a hybrid control using PW-MEM.
4. Construct a hybrid control using rMAP.
5. Apply the marginal structure model (MSM) with a logit link to the combined data, adjusting the effect of pre-treatment

variables.

When there is only one EC, there exists two exchangeability configurations: M1 ∶ 𝜃0 = 𝜃1 vs. M2 ∶ 𝜃0 ≠ 𝜃1. We should
pool EC and IC together if M1 is true and we should only rely on IC if M2 is true. For PW-MEM, we assume the prior
probability of pooling and not pooling is equally likely, that is, 𝜋(M1) = 𝜋(M2) = 0.5. We will evaluate the effect of different
prior choices for PW-MEM in Section 3.2.

For the rMAP approach, we construct an informative prior for 𝜃0 based on EC data using the meta-analytic-predictive
prior (MAP) method. To protect against type-I error rate inflation in the presence of prior-data conflict, the MAP is robus-
tified by adding a non-informative component corresponding to data from one observation. The weight of the robust
component is set to be 0.5. We set up a grid of values representing different levels of between-trial heterogeneity and cal-
culate the prior ESS of the rMAP prior based on each value in the grid. The rMAP prior is calibrated by selecting the value
of between-trial heterogeneity such that the prior ESS approximately equals to the sample size of IC to prevent excessive
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3822 WEI et al.

borrowing. Standard Bayesian calculus for mixture models implies that the posterior distribution is again a mixture, with
component-wise posterior distributions and updated mixture weights.30,31 The latter depend on the a-priori weights and
on how likely the data are under the mixture components. We implement the rMAP approach using the RBest package.32

For method (1)–(4), we will conclude the treatment is effective if the posterior probability of 𝜃T > 𝜃0 is greater than a
prespecified threshold 𝜙, assuming a Beta(0.5, 0.5) prior for 𝜃T and 𝜙 = 0.95.

For MSM, we assume a one-sided significance level of 0.05 and conduct hypothesis testing based on robust standard
error. MSM and PW-MEM are based on the same weight function defined by Equation (1).

The R code for implementing the PW-MEM approach can be accessed at https://github.com/smartbenben/PW-MEM.

3.1 Simulation results

We summarize the performance of different approaches in Figure 1. Under Scenario 1, the distribution of pre-treatment
variables are identical between different data sources. In this case, statistical approaches capable of incorporating EC data
(MSM, PW-MEM, rMAP and pooled-test) drastically boost the statistical power in this scenario without inflating the type
I error rate.
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F I G U R E 1 The probability of rejecting the null using different approaches under the null and the alternative based on simulation
studies assuming the clinical outcomes are binary.

 10970258, 2024, 20, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10158 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [27/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/smartbenben/PW-MEM
https://github.com/smartbenben/PW-MEM


WEI et al. 3823

In Scenarios 2 and 3, the distribution of prognostic variable X5 differs between IC and EC, resulting in substantial
heterogeneity between these patient populations. In Scenario 2, the marginal probability of response in IC and EC is 0.27
and 0.20, respectively. Simply combining EC and IC data results in a downward bias for the estimated response rate in the
control group and the pooled-test produces a type I error rate greater than 0.30. In Scenario 3, the marginal probability
of response for IC (0.16) is lower than that of EC (0.20). The pooled-test has lower power than MSM because its has
an upward bias in estimating the response rate of control arm. In Scenarios 2 and 3, when there exists no unobserved
confounders, marginal structure model based on PW effectively eliminates the bias resulting from the confounding of
X5 and provides more power compared to IN-test with slightly inflated type I error rate. In both scenarios, the proposed
PW-MEM method is able to provide more power than the IN-test. It is more conservative compared to MSM as it further
down-weights the external data according to external-internal outcome similarities.

The internal-external data conflict present in Scenario 4 is caused by an unknown confounder. The marginal probabil-
ity of response for IC (0.29) in Scenario 4 is higher than that of EC (0.20). MSM is not effective at reducing the systematic
differences between EC and IC in this case because the unknown confounders are not included in the estimation of
propensity scores and are not included as covariates. As a result, MSM leads to inflated type I error rate in Scenario 4.
Compared to MSM, PW-MEM is able to provide better protection on type I error rate by reducing the influence of EC data
according to the similarity of outcome data between EC and IC.

Compared to IN-test, the proposed PW-MEM approach provides more statistical power in all scenarios considered
and is able to maintain the type I error rate at target level when all confounders have been accounted for in the PS model.
Compared to the MSM approach, PW-MEM can provide better control of type I error rate in the presence of unknown
confounders. In comparison with rMAP, PW-MEM provides better control of type I error rate especially under Scenario
2 and achieves higher power in Scenarios 2–4.

3.2 Prior sensitivity analysis

We assess the sensitivity of the PW-MEM approach to different prior choices by considering 𝜋(M1) =
(0.05, 0.33, 0.5, 0.67, 0.95) in the aforementioned simulation scenarios. We summarize the results of prior sensitivity
analysis in Figure 2. For all the prior choices we considered, their type I error rates are below 0.05 in Scenarios 1–3 and
close to 0.10 under Scenario 4 in the presence of unobserved confounders.

In Scenarios 1–3, the PS weighting method is able to eliminate the confounding due to unbalanced pre-treatment
covariates between EC and IC. The prior strongly favoring the non-exchangeability of the PW-EC and IC (𝜋(M1) = 0.05)
has larger type I error rate and smaller power compared to other prior choices. In contrast, prior choices considering the
exchangeable assumption more plausible can borrow more data from the PW-EC group, resulting in reduced type I and
type II error rates.

In Scenario 4, the PS weighting method is not able to eliminate the bias resulting from unobserved confounders.
Regardless the choice of priors, the PW-MEM method leads to inflated type I error rate and priors more reluctant to
borrow are associated with smaller type I error rates. Nevertheless, even with the most aggressive prior (𝜋(M1) = 0.95),
the type I error rate is less than 0.10.

4 REAL DATA APPLICATION

4.1 ADNI data

In this section, we will apply the PW-MEM method to a hypothetical hybrid controlled trial with continuous endpoint
using data obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private partnership with the aim of testing whether serial magnetic resonance
imaging (MRI), clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). The purpose of this example is to illustrate the utility of the
proposed methodology while using HCT for development of new drug in this therapeutic area.

The dataset we obtained from ADNI consists of records from 1467 individuals including patient-level data on demo-
graphics (age, gender, years of education), baseline lab tests (ApoE4 status), scores of cognitive tests at baseline and
over a period of 18 months. For demonstration purpose, the endpoint we focus on here is the 18-month changes in
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F I G U R E 2 The probability of rejecting the null based on different prior choices for PW-MEM under different simulation scenarios,
assuming the prior probability that the weighted external control is exchangeable with the internal control is 0.05, 0.33, 0.5, 0.67, and 0.95.

Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog11).33 We consider external control (EC) as the
cohort of patients (n = 727) with the date of examination before 2011. This group seems most relevant and comparable
with the control arm of current study. Then we evaluate the performance of PW-MEM and several competing approaches
as follows:

1. Take a bootstrap sample of 90 patients who are not included in the EC.
2. Randomize these 90 patients in 2:1 ratio to the treatment (IT) and the control group (IC). This is our internal data for

the current trial.
3. For patients randomized to the treatment arm, add a treatment effect Δ = 0 under the null hypothesis, and Δ = −2

under the alternative hypothesis.
4. We test treatment effect using four different approaches: (1) test treatment effect based on only the internal data

(IN-test); (2) test treatment effect by naively combining internal and external data (pooled-test); (3) Marginal struc-
ture model (MSM) adjusting the effect of pre-treatment variables; (4) PW-MEM; (5) An approach based on Bayesian
robust meta-analytic-predictive prior (rMAP).

5. Repeat steps 1–4 for 1,000 times.
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T A B L E 3 Mean differences in baseline covariates between the external and internal control before and after propensity score weighting.

Covariates Before weighting After weighting

25% Median 75% 25% Median 75%

AGE (Years) 1.82 2.72 3.63 −0.03 0.01 0.05

Male (%) −2.0 5.0 8.0 −0.1 0.1 0.3

Years of education −0.91 −0.61 −0.24 −0.01 0.00 0.01

APOE4 (%) −5.0 2.0 9.0 −0.4 −0.1 0.1

ADAS11 at baseline 0.84 1.58 2.35 0.01 0.03 0.07

Note: The mean differences for baseline covariates are estimated in each bootstrap sample and the distribution of mean differences for each covariate are
summarized using their median, 25% and 75% percentiles.

We conduct IN-test and pooled-test by regressing the changes in ADAS-Cog11 scores on treatment group. Similar to
the previously described simulation studies, we assume the prior probability for the two exchangeable configurations are
equally likely (𝜋(M1) = 𝜋(M2) = 0.5) in setting up PW-MEM. The rMAP prior is constructed to include a robust compo-
nent corresponding to one observation with a prior weight of 0.5. It should be noted that MSM and PW-MEM are based
on the same weight function defined in Equation (1).

We consider a one-sided significance level of 0.05 for IN-test, pooled-test and MSM. For PW-MEM and rMAP, we
assume 𝜃T has a normal prior with a standard deviation of 100, that is, 𝜋(𝜃T) ∼ N(0,100) and conclude the experimental
treatment is superior than the control if the posterior probability of having any cognitive improvement given all available
data D is greater than a pre-specified threshhold 𝜙:

P(Δ < 0|D) > 𝜙,

where Δ = 𝜃T − 𝜃0 and 𝜙 = 0.95.

4.2 Results

The hypothetical trial based on ADNI data represents a situation when only a limited number of pre-treatment vari-
ables are available from the external data and the effectiveness of PS based approaches in eliminating confounders is
questionable.

For each bootstrapped sample, we calculate the mean differences of baseline covariates between the external and
internal control groups before and after PS weighting. We summarize the distribution of covariate mean differences in
Table 3. Based on Table 3, The use of PS weighting effectively eliminates the unbalance in covariates distributions between
IC and EC.

We summarize the type I error rate, power and coverage probability of PW-MEM and several competing statisti-
cal approaches in Figure 3. A traditional RCT evaluating treatment effect using only internal data (IN-test) has type
I error rate and coverage probabilities close to the pre-specified target levels, but it provides only 66.7% power in this
hypothetical, 2:1 randomized trial. In contrast, the pooled-test incorporating all EC data without any considerations for
external-internal data conflict results in a severe inflation of type I error rate (∼ 0.279) and provides low coverage com-
pared to other approaches. Compared to naive pooling approach, the MSM method can offer some protection against
internal-external data conflict through PW. However, the usefulness of PW in this case might be limited because only
a few pre-treatment covariates are available and it is very likely that important prognostic variables are not included in
estimating the propensity scores. As a result, the MSM approach also has inflated type I error rate and reduced coverage
probabilities. Compared to MSM, the PW-MEM approach is able to detect the remaining discrepancies between PW-EC
and IC data and down-weight the PW-EC data according to their similarity in outcome distributions. Our bootstrap study
shows PW-MEM maintains a type I error rate close to the target level of 0.05, achieves more statistical power than IN-test
(74.7% vs. 66.7%) and provides coverage probabilities close to 0.95. The rMAP approach performs similarly to PW-MEM,
albeit showing inflated type I error rate (∼ 0.08).
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F I G U R E 3 The probability of rejecting the null and the coverage probability of different approaches under the null and the alternative
hypothesis based on bootstrapping from the ADNI dataset.

Figure 4 summarizes the bias of treatment effect estimates based on these approaches. Compared to MSM and rMAP,
PW-MEM is more effective at controlling the bias caused by internal-external heterogeneity.

5 DISCUSSION

In this work, we develop a novel statistical strategy for augmenting the control arm of RCTs by leveraging external data.
The proposed PW-MEM is easy to implement as all the posterior computations can be performed in close form without the
need for MCMC. All the parameters in the PW-MEM approach can be specified at the trial designing stage and requires
minimal model calibration. Compared to the divide-and-conquer strategies,17,18,34 PW-MEM can be applied to studies
of relatively small sample sizes, which is often seen in trials of rare diseases and oncology. Based on simulation and
resampling studies, we demonstrate the use of PW-MEM can provide considerable increases in statistical power and
protects the type I error rate from overly inflated in the presence of both known and unknown confounders.

Implementing the PW-MEM approach requires the evaluation of marginal likelihood function. In this work, we focus
on single parameter models as their marginal likelihood either exist in close form or can be solved using numerical
integration. Expanding the proposed method to more complex models will be more challenging as the marginal likelihood
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F I G U R E 4 The bias of treatment effect estimates using different statistical approaches under the null and the alternative based on
bootstrapping from the ADNI dataset.

function becomes less tractable with the inclusion of multiple parameters, and careful evaluations are needed to examine
the sensitivity of the marginal likelihood under different prior choices.

A limitation of the proposed strategy is its potential sensitivity to the presence of extreme weights caused by propensity
scores near 0 or 1. We recognize that a number of ad hoc decisions can be made to reduce the influence of extreme weights
on the construction of the hybrid control arm, including trimming and truncation.35,36 However, the selection of trimming
or truncation threshold is often arbitrary and is therefore out of the scope of this paper. In this work, we demonstrate the
proposed PW-MEM approach can be applied to situations when the internal control has a relatively small sample size
based on simulation and resampling studies. However, it should be noted that the performance of the PW-MEM method
can be negatively affected when the sample size of the internal or external control is too limited. The question of how small
is too small requires a case-by-case evaluation. When sample size is too limited, the first step of the PW-MEM approach
might produce weighted estimators with increased bias and variance due to the increased chance of empirically violating
the positivity assumption regarding to trial participation.37 The performance of the PW-MEM method also relies on the
correct specification of the propensity score model, which should include all the observed confounders and their higher
order terms when necessary. Therefore, cautions are needed when implementing the PW-MEM approach to make sure
the sample size available can accommodate a propensity score model that provides a reasonably well approximation of
the true functional form. In future work, we plan to investigate the sample size requirement for studies employing the
PW-MEM method.
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